5 GOTO10010 10 DATAUniformly accelerated motion,"v=vß+at , a=v/t , s=vßt+atý/2",10,20, 20 DATANewton's equation of motion,F=ma,10,30, 30 DATACircular motion,T=2ãr/v=2ã/“=1/f,20,40, 40 DATACircular motion,"“=2ã/T=2ãf=v/r , F=mr“ý=mvý/r",30,50, 50 DATASimple harmonic oscillation,"x=r¥sin“t , v=r“¥cos“t , a=-“ýx",40,60, 60 DATAHooke's law,F=-kx,50,70, 70 DATASpring,"a=F/m=-k/m¥x , T=2ãû(m/k)",60,80, 80 DATASimple pendulum,"a=F/m=-g/l¥x , T=2ãû(l/g)",70,90, 90 DATAPotential energy,Ep=mgh,80,100, 100 DATAElastic energy (spring),Ee=1/2¥kxý,90,110, 110 DATAKinetic energy,Ek=1/2¥mvý,100,120, 120 DATACoefficient of friction,F=æN,110,130, 130 DATAWork,W=Fs,120,140, 140 DATAKepler's law (3'rd),Tý/rþ=Constant,130,150, 150 DATAUniversal gravitation,"F=G¥Mm/rý , G=6.7*10ïÇ[N¥mý/kgý]",140,160, 160 DATAPotential energy (planet),Up=-G¥Mm/r ,150,170, 170 DATAKinetic energy (planet),Ek=1/2¥mrý“ý,160,180, 180 DATAMoment of inertia,"I=mrý , E=1/2¥I“ý",170,190, 190 DATAAngular momentum,J=I“,180,200, 200 DATAConservation of momentum,mvÆ+MVÆ=mv’+MV’,190,200, 10010 MODE8:DIM:x=10:y=200:r=x 10020 DEFCHR$(255)="202048F808" 10030 DEFCHR$(254)="3E020C223E" 10040 DEFCHR$(253)="2E2A3A0000" 10050 DEFCHR$(252)="123E020000" 10110 RESTORE(r) 10120 CLS:READm$,n$,b,c,d 10130 l$="["+MID$(STR$(r/10),2)+"]":l=32-LEN(l$) 10140 PRINTm$;TAB(l);l$;n$;:LOCATE0,0:LOCATE1,1 10150 z=ASC(INPUT$(1,@)) 10170 IFz=29 ANDr<>x THENr=x:GOTO10110 10180 IFz=28 ANDr<>y THENr=y:GOTO10110 10190 IFz=30 ANDr<>b THENr=b:GOTO10110 10200 IF(z=31 ORz=13) ANDr<>c THENr=c:GOTO10110 10280 GOTO10150